2 research outputs found

    Sparks and waves in a stochastic fire-diffuse-fire model of Ca2+

    Get PDF
    Calcium ions are an important second messenger in living cells. Indeed calcium signals in the form of waves have been the subject of much recent experimental interest. It is now well established that these waves are composed of elementary stochastic release events (calcium puffs) from spatially localized calcium stores. Here we develop a computationally inexpensive model of calcium release based upon a stochastic generalization of the Fire-Diffuse-Fire (FDF) threshold model. Our model retains the discrete nature of calcium stores, but also incorporates a notion of release probability via the introduction of threshold noise. Numerical simulations of the model illustrate that stochastic calcium release leads to the spontaneous production of calcium sparks that may merge to form saltatory waves. In the parameter regime where deterministic waves exist it is possible to identify a critical level of noise defining a non-equilibrium phase-transition between propagating and abortive structures. A statistical analysis shows that this transition is the same as for models in the directed percolation universality class. Moreover, in the regime where no initial structure can survive deterministically, threshold noise is shown to generate a form of array enhanced coherence resonance whereby all calcium stores release periodically and simultaneously

    Wave bifurcation and propagation failure in a model of Ca2+ release

    Get PDF
    The De Young Keizer model for intracellular calcium oscillations is based around a detailed description of the dynamics for inositol trisphosphate (IP3) receptors. Systematic reductions of the kinetic schemes for IP3 dynamics have proved especially fruitful in understanding the transition from excitable to oscillatory behaviour. With the inclusion of diffusive transport of calcium ions the model also supports wave propagation. The analysis of waves, even in reduced models, is typically only possible with the use of numerical bifurcation techniques. In this paper we review the travelling wave properties of the biophysical De Young Keizer model and show that much of its behaviour can be reproduced by a much simpler Fire-Diffuse-Fire (FDF) type model. The FDF model includes both a refractory process and an IP3 dependent threshold. Parameters of the FDF model are constrained using a comprehensive numerical bifurcation analysis of solitary pulses and periodic waves in the De Young Keizer model. The linear stability of numerically constructed solution branches is calculated using pseudospectral techniques. The combination of numerical bifurcation and stability analysis also allows us to highlight the mechanisms that give rise to propagation failure. Moreover, a kinematic theory of wave propagation, based around numerically computed dispersion curves is used to predict waves which connect periodic orbits. Direct numerical simulations of the De Young Keizer model confirm this prediction. Corresponding travelling wave solutions of the FDF model are obtained analytically and are shown to be in good qualitative agreement with those of the De Young Keizer model. Moreover, the FDF model may be naturally extended to include the discrete nature of calcium stores within a cell, without the loss of analytical tractability. By considering calcium stores as idealised point sources we are able to explicitly construct solutions of the FDF model that correspond to saltatory periodic travelling waves
    corecore